Tutorial: A brief survey on tensor rank and tensor decomposition, from a geometric perspective. Workshop
Computational nonlinear Algebra

$$
\begin{aligned}
& \text { (June 2-6, 2014) } \\
& \text { ICERM, Providence }
\end{aligned}
$$

Giorgio Ottaviani

Università di Firenze

Let V_{i} be vector spaces over $K=\mathbb{R}$ or \mathbb{C}. A tensor is an element $f \in V_{1} \otimes \ldots \otimes V_{k}$, that is a multilinear map $V_{1}^{\vee} \times \ldots \times V_{k}^{\vee} \rightarrow K$ A tensor can be visualized as a multidimensional matrix.

Entries of f are labelled by k indices, as $a_{i_{1} \ldots i_{k}}$
For example, in the case $3 \times 2 \times 2$, with obvious notations, the expression in coordinates of a tensor is

$$
\begin{aligned}
& a_{000} x_{0} y_{0} z_{0}+a_{001} x_{0} y_{0} z_{1}+a_{010} x_{0} y_{1} z_{0}+a_{011} x_{0} y_{1} z_{1}+ \\
& a_{100} x_{1} y_{0} z_{0}+a_{101} x_{1} y_{0} z_{1}+a_{110} x_{1} y_{1} z_{0}+a_{111} x_{1} y_{1} z_{1}+ \\
& a_{200} x_{2} y_{0} z_{0}+a_{201} x_{2} y_{0} z_{1}+a_{210} x_{2} y_{1} z_{0}+a_{211} x_{2} y_{1} z_{1}
\end{aligned}
$$

Just as matrices can be cutted in rows or in columns, higher dimensional tensors can be cut in slices

The three ways to cut a $3 \times 2 \times 2$ matrix into parallel slices For a tensor of format $n_{1} \times \ldots \times n_{k}$, there are n_{1} slices of format $n_{2} \times \ldots \times n_{k}$.

Multidimensional Gauss elimination

We can operate adding linear combinations of a slice to another slice, just in the case of rows and columns.
This amounts to multiply A of format $n_{1} \times \ldots \times n_{k}$ for $G_{1} \in G L\left(n_{1}\right)$, then for $G_{i} \in G L\left(n_{i}\right)$.

The group acting is quite big
$G=G L\left(n_{1}\right) \times \ldots \times G L\left(n_{k}\right)$.

The group is big, but not so big...

Let $\operatorname{dim} V_{i}=n_{i}$
$\operatorname{dim} V_{1} \otimes \ldots \otimes V_{k}=\prod_{i=1}^{k} n_{i}$
$\operatorname{dim} G L\left(n_{1}\right) \times \ldots \times G L\left(n_{k}\right)=\sum_{i=1}^{k} n_{i}^{2}$

For $k \geq 3$, the dimension of the group is in general much less that the dimension of the space where it acts.
This makes a strong difference between the classical case $k=2$ and the case $k \geq 3$.

Decomposable tensors, of rank one.

We need some "simple" tensors to start with.

Definition

A tensor f is decomposable if there exist $x^{i} \in V_{i}$ for $i=1, \ldots, k$ such that $a_{i_{1} \ldots i_{k}}=x_{i_{1}}^{1} x_{i_{2}}^{2} \ldots x_{i_{k}}^{k}$. In equivalent way, $f=x^{1} \otimes \ldots \otimes x^{k}$.

For a (nonzero) usual matrix, decomposable \Longleftrightarrow rank one. Define the rank of a tensor t as

$$
\operatorname{rk}(t):=\min \left\{r \mid t=\sum_{i=1}^{r} t_{i}, t_{i} \text { are decomposable }\right\}
$$

For matrices, this coincides with usual rank.

Weierstrass Theorem about Tensor Decomposition in

 $n \times n \times 2$ case
souastang

Theorem (Weierstrass)

A general tensor t of format $n \times n \times 2$ has a unique tensor decomposition as a sum of n decomposable tensors

There is a algorithm to actually decompose such tensors. We see how it works in a $3 \times 3 \times 2$ example.

We consider the following "random" real tensor

$$
\begin{array}{rlrl}
f= & 6 x_{0} y_{0} z_{0} & +2 x_{1} y_{0} z_{0}+6 x_{2} y_{0} z_{0} \\
& -2014 x_{0} y_{1} z_{0} & +121 x_{1} y_{1} z_{0}-11 x_{2} y_{1} z_{0} \\
& +48 x_{0} y_{2} z_{0} & & -13 x_{1} y_{2} z_{0}-40 x_{2} y_{2} z_{0} \\
& -31 x_{0} y_{0} z_{1} & +93 x_{1} y_{0} z_{1}+97 x_{2} y_{0} z_{1} \\
& +63 x_{0} y_{1} z_{1} & & +41 x_{1} y_{1} z_{1}-94 x_{2} y_{1} z_{1} \\
& -3 x_{0} y_{2} z_{1} & & +47 x_{1} y_{2} z_{1}+4 x_{2} y_{2} z_{1}
\end{array}
$$

We divide into two 3×3 slices, like in

Sum the yellow slice plus t times the red slice.

$$
f_{0}+t f_{1}=\left(\begin{array}{ccc}
-31 t+6 & 63 t-2014 & -3 t+48 \\
93 t+2 & 41 t+121 & 47 t-13 \\
97 t+6 & -94 t-11 & 4 t-40
\end{array}\right)
$$

Singular combination of slices

We compute the determinant, which is a cubic polynomial in t

$$
\operatorname{det}\left(f_{0}+t f_{1}\right)=159896 t^{3}-8746190 t^{2}-5991900 t-69830
$$

with roots $t_{0}=-.0118594, t_{1}=-.664996, t_{2}=55.3761$.

This computation gives a "guess" about the three summands for z_{i}, (note the sign change!)
$f=A_{0}\left(.0118594 z_{0}+z_{1}\right)+A_{1}\left(.664996 z_{0}+z_{1}\right)+A_{2}\left(-55.3761 z_{0}+z_{1}\right)$
where A_{i} are 3×3 matrices, that we have to find. Indeed, we get
$f_{0}+t f_{1}=A_{0}(.0118594+t)+A_{1}(.664996+t)+A_{2}(-55.3761+t)$
and for the three roots $t=t_{i}$ one summand vanishes, it remains a matrix of rank 2, with only two colors, hence with zero determinant.

Finding the three matrices from kernels.

In order to find A_{i}, let $a_{0}=(-.0589718-.964899 .255916)$, left kernel of $f_{0}+t_{0} f_{1}$
let $b_{0}=(-.992905-.00596967-.118765)$, transpose of right kernel of $f_{0}+t_{0} f_{1}$.
In the same way, denote
$a_{1}=$ left kernel of $f_{0}+t_{1} f_{1}, \quad a_{2}=$ left kernel of $f_{0}+t_{2} f_{1}$
$b_{1}=$ transpose of right kernel of $f_{0}+t_{1} f_{1}, \quad b_{2}=$ transpose of right kernel of $f_{0}+t_{2} f_{1}$,

$$
\begin{aligned}
& a a=\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right)=\left(\begin{array}{ccc}
-.0589718 & -.964899 .255916 \\
-.014181 & -.702203 & .711835 \\
.959077 & .0239747 & .282128
\end{array}\right) \\
& b b=\left(\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2}
\end{array}\right)=\left(\begin{array}{ccc}
-.992905 & -.00596967-.118765 \\
.582076 & -.0122361 & -.813043 \\
.316392 & .294791 & -.901662
\end{array}\right)
\end{aligned}
$$

Inversion and summands of tensor decomposition

Now we invert the two matrices

$$
\begin{aligned}
& a a^{-1}=\left(\begin{array}{ccc}
.450492 & -.582772 & 1.06175 \\
-1.43768 & .548689 & -.0802873 \\
-1.40925 & 1.93447 & -.0580488
\end{array}\right) \\
& b b^{-1}=\left(\begin{array}{ccc}
-.923877 & .148851 & -.0125305 \\
-.986098 & -3.43755 & 3.22958 \\
-.646584 & -1.07165 & -.0575754
\end{array}\right)
\end{aligned}
$$

The first summand A_{0} is given by a scalar c_{0} multiplied by $\left(.450492 x_{0}-1.43768 x_{1}-1.40925 x_{2}\right)\left(-.923877 y_{0}-.986098 y_{1}-\right.$. $646584 y_{2}$)
the same for the other colors.

Decomposition as sum of three terms

By solving a linear system, we get the scalars c_{i}

```
(.450492x0 - 1.43768\mp@subsup{x}{1}{}-1.40925x\mp@subsup{x}{2}{})(-.923877\mp@subsup{y}{0}{}-.986098\mp@subsup{y}{1}{}-.646584\mp@subsup{y}{2}{})(.809777\mp@subsup{z}{0}{}+68.2814\mp@subsup{z}{1}{})+
(-.582772\mp@subsup{x}{0}{}+.548689\mp@subsup{x}{1}{}+1.93447\mp@subsup{x}{2}{})(.148851\mp@subsup{y}{0}{}-3.43755\mp@subsup{y}{1}{}-1.07165\mp@subsup{y}{2}{})(18.6866\mp@subsup{z}{0}{}+28.1003\mp@subsup{z}{1}{})+
(1.06175\mp@subsup{x}{0}{}-.0802873\mp@subsup{x}{1}{}-.0580488\mp@subsup{x}{2}{})(-.0125305\mp@subsup{y}{0}{}+3.22958\mp@subsup{y}{1}{}-.0575754y2)(-598.154\mp@subsup{z}{0}{}+10.8017\mp@subsup{z}{1}{})
and the sum is
```

$$
\begin{array}{rr}
6 x_{0} y_{0} z_{0}+2 x_{1} y_{0} z_{0} & +6 x_{2} y_{0} z_{0} \\
-2014 x_{0} y_{1} z_{0}+121 x_{1} y_{1} z_{0} & -11 x_{2} y_{1} z_{0} \\
+48 x_{0} y_{2} z_{0}-13 x_{1} y_{2} z_{0} & -40 x_{2} y_{2} z_{0} \\
-31 x_{0} y_{0} z_{1}+93 x_{1} y_{0} z_{1} & +97 x_{2} y_{0} z_{1} \\
+63 x_{0} y_{1} z_{1}+41 x_{1} y_{1} z_{1} & -94 x_{2} y_{1} z_{1} \\
-3 x_{0} y_{2} z_{1}+47 x_{1} y_{2} z_{1} & +4 x_{2} y_{2} z_{1}
\end{array}
$$

The rank of the tensor f is 3 , because we have 3 summands, and no less.

Uniqueness of the decomposition

The decomposition we have found is unique, up to reordering the summands.
This is a strong difference with the case of matrices, where any decomposition with at least two summands is never unique.

For tensors f of rank ≤ 2, the characteristic polynomial vanishes identically.
We understand this phenomenon geometrically, in a while.

Coincident roots, hyperdeterminant

What happens if we have two coincident roots in $\operatorname{det}\left(f_{0}+t f_{1}\right)$?

In this case, the discriminant of characteristic polynomial vanishes, the discriminant is an invariant of the tensor, called the hyperdeterminant.

The hyperdeterminant of format $n \times n \times 2$ has degree $2 n(n-1)=4\binom{n}{2}$.

References [Gelfand-Kapranov-Zelevinsky] Discriminants, resultants and multidimensional determinants, Birkhauser.
[O] An introduction to the hyperdeterminant and to the rank of multidimensional matrices. (book chapter, available on arXiv)

The hyperdeterminant of a general tensor

The hyperdeterminant of a tensor $f \in V_{1} \otimes V_{2} \otimes V_{3}$ vanishes if and only if there exist nonzero $x^{i} \in V_{i}$ such that

$$
f\left(-, x^{2}, x^{3}\right)=f\left(x^{1},-, x^{3}\right)=f\left(x^{1}, x^{2},-\right)=0
$$

It is a codimension 1 condition if the triangle inequality holds

$$
\left(\operatorname{dim} V_{i}-1\right) \leq\left(\operatorname{dim} V_{j}-1\right)+\left(\operatorname{dim} V_{k}-1\right) \quad \forall i, j, k,
$$

which is the assumption for the hyperdeterminant to exist.
A picture is useful. $\operatorname{Det}(f)=0$ if and only if, after a linear change of coordinates, f is zero on the "red corner".

The generating function for degree of the hyperdeterminant

Let $N\left(k_{0}, k_{1}, k_{2}\right)$ be the degree of the hyperdeterminant of format $\left(k_{0}+1\right) \times\left(k_{1}+1\right) \times\left(k_{2}+1\right)$.

Theorem ([GKZ] Thm. XIV 2.4)

$$
\sum_{k_{0}, k_{1}, k_{2} \geq 0} N\left(k_{0}, k_{1}, k_{2}\right) z_{0}^{k_{0}} z_{1}^{k_{1}} z_{2}^{k_{2}}=\frac{1}{\left(1-\left(z_{0} z_{1}+z_{0} z_{2}+z_{1} z_{2}\right)-2 z_{0} z_{1} z_{2}\right)^{2}}
$$

List of degree of hyperdeterminants of format (a, b, c)

format	degree	boundary format
$(1, a, a)$	a	
$(2,2,2)$	4	$*$
$(2,2,3)$	6	$*$
$(2,3,3)$	12	
$(2,3,4)$	12	$*$
$(2,4,4)$	24	
$(2,4,5)$	20	
$(3,3,3)$	36	
$(3,3,4)$	48	
$(3,3,5)$	30	
$(3,4,4)$	108	
$(3,4,5)$	120	
$(4,4,4)$	272	
$(2, b, b)$	$2 b(b-1)$	$*$
$(2, b, b+1)$	$b(b+1)$	$(a+b-1)!$
$(a, b, a+b-1)$	$\frac{}{(a-1)!(b-1)!}$	$*$

Symultaneous diagonalization, Corollary of Weierstrass Theorem

Corollary

For any tensor f of format $n \times n \times 2$, such that $\operatorname{Det}(f) \neq 0$, with slices f_{0}, f_{1}, there are invertibles matrix $G, H \in G L(n)$ such that $G f_{i} H$ is diagonal for $i=1,2 . G f_{0} H$ may be assumed to be the identity.

Expression of hyperdeterminant
If $G f_{0} H=\operatorname{Id}_{n}, G f_{1} H=\operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ then

$$
\operatorname{Det}(G f H)=\prod_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2}
$$

The rank may depend on the field.

- What happens if we have a pair of complex imaginary roots ?

On complex numbers, we still have rank 3. But on real numbers, the rank becomes 4 [tenBerge, 2000].
On $3 \times 3 \times 2$ case, this is governed by the sign of hyperdeterminant. Unless a set of measure zero, the following holds

$$
\left\{\begin{array}{l}
\operatorname{Det}(f)>0 \Longrightarrow \operatorname{rk}_{\mathbb{R}}(f)=3 \\
\operatorname{Det}(f)<0 \Longrightarrow \operatorname{rk}_{\mathbb{R}}(f)=4 .
\end{array}\right.
$$

If the tensor is chosen randomly, according to normal distribution, the probability to get rank 3 is exactly $\frac{1}{2}$ [Bergqvist, 2011].

The rank may depend on the field, in contrast to the matrix case.

Ranks which are attained in subsets of positive measure are called typical ranks. On \mathbb{C} there is only one typical rank. On \mathbb{R} there may be several typical ranks, the smallest one coincide with the complex one.
tenBerge proves that for format $n \times n \times 2$, the typical ranks are n or $n+1$, depending on the characteristic polynomial having n real roots or not (the condition is that the Bezoutian must be positive definite).

Semialgebraic sets and best rank approximation

So in $3 \times 3 \times 2$ case, the hyperdeterminant divides the space in two regions, where the real rank is 3 or 4 . But the rank on the hypersurface can be 1,2 or 4 , never 3 . So for tensors of rank 4 , the best rank three approximation does not exist on real numbers.

Best rank one approximation

The distance of our tensor f of format $3 \times 3 \times 2$ from the three summands of its tensor decomposition, according to the L_{2}-norm (euclidean), is respectively
2031.02 , 2071.18 , 4427.47.

May we have a smaller distance to other rank one tensors ?

In order to find the best rank one approximation of f we may compute all critical points x for the distance from f to the variety of rank 1 matrices. The condition is that the tangent space at x is orthogonal to the vector $f-x$.

Recall SVD and Eckart-Young theorem

Any matrix A has the SVD decomposition

$$
A=U \Sigma V^{t}
$$

where U, V are orthogonal and $\sigma=\operatorname{Diag}\left(\sigma_{1}, \sigma_{2}, \ldots\right)$, with $\sigma_{1} \geq \sigma_{2} \geq \ldots$. Decomposing
$\Sigma=\operatorname{Diag}\left(\sigma_{1}, 0,0, \ldots\right)+\operatorname{Diag}\left(0, \sigma_{2}, 0, \ldots\right)+\ldots=\Sigma_{1}+\Sigma_{2}+\ldots$ we find

$$
A=U \Sigma_{1} V^{t}+U \Sigma_{2} V^{t}+\ldots
$$

Theorem (Eckart-Young, 1936)

- $U \Sigma_{1} V^{t}$ is the best rank 1 approximation of A, that is $\left|A-U \Sigma_{1} V^{t}\right| \leq|A-X|$ for every rank 1 matrix X.
- $U \Sigma_{1} V^{t}+U \Sigma_{2} V^{t}$ is the best rank 2 approximation of A, that is $\left|A-U \Sigma_{1} V^{t}-U \Sigma_{2} V^{t}\right| \leq|A-X|$ for every rank ≤ 2 matrix X.
- So on, for any rank.

Best rank approximation and tensor decomposition

Among the infinitely many tensor decompositions available for matrices, Eckart-Young Theorems detects one of them, which is particularly nice in optimization problems.

For tensors we have no choices, because the tensor decomposition is often unique (precise statement later). It is unique in $n \times n \times 2$ case. Does it help in best rank approximation ? The answer is negative, due to a subtle fact we are going to explain.

Eckart-Young revisited.

In the SVD $A=U \Sigma V^{t}$, the columns u_{i} of U and v_{i} of V satisfy the conditions $A v_{i}=\sigma_{i} u_{i}, A^{t} u_{i}=\sigma_{i} v_{i}$.
(u_{i}, v_{i}) is called a singular vector pair. They are all the critical points of the distance from A to the variety of rank one matrices.

Theorem (Eckart-Young revisited)

All critical points of the distance from A to the variety of rank $\leq r$ matrices are given by $U \Sigma_{i_{1}} V^{t}+\ldots+U \Sigma_{i_{r}} V^{t}$, their number is $\binom{n}{r}$.

Lim (2000), variational principle

Looking at critical points of the distance, for tensors of format $m_{1} \times \ldots \times m_{d}$ we get singular vector d-ples, a notion analogous to singular vector pairs for matrices.

Theorem (Lim)

The critical points of the distance from $f \in \mathbb{R}^{n} \otimes \mathbb{R}^{n} \otimes \mathbb{R}^{2}$ to the variety of rank 1 tensors are given by triples
$(x, y, z) \in \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{2}$ such that

- $f \cdot(x \otimes y)=\lambda z$,
- $f \cdot(y \otimes z)=\lambda x$,
- $f \cdot(z \otimes x)=\lambda y$.
$(x \otimes y \otimes z)$ in Lim Theorem is called a singular vector triple (defined independently by Qi). λ is called a singular value.

15 singular vector triples for our tensor f of format

$3 \times 3 \times 2$

We may compute all singular vector triples for

$$
\begin{array}{rlr}
f= & 6 x_{0} y_{0} z_{0} & +2 x_{1} y_{0} z_{0}+6 x_{2} y_{0} z_{0} \\
& -2014 x_{0} y_{1} z_{0} & +121 x_{1} y_{1} z_{0}-11 x_{2} y_{1} z_{0} \\
& +48 x_{0} y_{2} z_{0} & -13 x_{1} y_{2} z_{0}-40 x_{2} y_{2} z_{0} \\
& -31 x_{0} y_{0} z_{1} & +93 x_{1} y_{0} z_{1}+97 x_{2} y_{0} z_{1} \\
& +63 x_{0} y_{1} z_{1} & +41 x_{1} y_{1} z_{1}-94 x_{2} y_{1} z_{1} \\
& -3 x_{0} y_{2} z_{1} & +47 x_{1} y_{2} z_{1}+4 x_{2} y_{2} z_{1}
\end{array}
$$

We find 15 singular vector triples, 9 of them are real, 6 of them make 3 conjugate pairs.
The minimum distance is 184.038 , and the best rank one approximation is given by the singular vector triple $\left(x_{0}-.0595538 x_{1}+.00358519 x_{2}\right)\left(y_{0}-289.637 y_{1}+6.98717\right)\left(6.95378 z_{0}-.2079687 z_{1}\right)$. It is unrelated to the three summands of tensor decomposition, in contrast with Eckart-Young Theorem for matrices.

Why Eckart-Young theorem does not hold for tensors ?

The way Eckart-Young generalizes to tensors is more subtle.

Theorem (Draisma-Horobet-O-Sturmfels-Thomas)

The 15 critical points p_{i} satisfy

$$
\operatorname{Det}\left(f-p_{i}\right)=0
$$

It is part of a more general theory about critical points (after coffee break!).
The phenomenon of the Theorem was first found by [Stegeman-Comon] in $2 \times 2 \times 2$ case, where they showed by examples that subtracting the best rank 1 approximation, may increase the tensor rank!
In case $n \times n \times 2$, there are $\binom{2 n}{2}=n(2 n-1)$ critical values,

Why geometry?

Corrado Segre in XIX century understood the tensor decomposition involved in Weierstrass Theorem in terms of projective geometry. The tensor t is a point of the space $\mathbb{P}\left(\mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{2}\right)$.
The decomposable tensors make the "Segre variety"

$$
X=\mathbb{P}\left(\mathbb{C}^{3}\right) \times \mathbb{P}\left(\mathbb{C}^{3}\right) \times \mathbb{P}\left(\mathbb{C}^{2}\right) \rightarrow \mathbb{P}\left(\mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{2}\right)
$$

From f there is a unique secant plane meeting X in three points. This point of view is extremely useful also today.
J.M. Landsberg, Tensors: Geometry and Applications, AMS 2012

Secant varieties

Secant varieties give basic interpretation of rank of tensors in Geometry.
Let $X \subset \mathbb{P} V$ be irreducible variety.

$$
\sigma_{k}(X):=\overline{\bigcup_{x_{1}, \ldots, x_{k} \in X}<x_{1}, \ldots, x_{k}>}
$$

where $\left.<x_{1}, \ldots, x_{k}\right\rangle$ is the projective span.
There is a filtration $X=\sigma_{1}(X) \subset \sigma_{2}(X) \subset \ldots$
This ascending chain stabilizes when it fills the ambient space.
So $\min \left\{k \mid \sigma_{k}(X)=\mathbb{P} V\right\}$ is called the generic X-rank.

Terracini Lemma describes the tangent space at a secant variety

Lemma

Terracini Let $z \in<x_{1}, \ldots, x_{k}>$ be general. Then $T_{z} \sigma_{k}(X)=<T_{x_{1}} X, \ldots, T_{x_{k}} X>$

Examples of secant varieties

$X=\mathbb{P} V \times \mathbb{P} W$
Then $\sigma_{k}(X)$ parametrizes linear maps $V^{\vee} \rightarrow W$ of rank $\leq k$. In this case the Zariski closure is not necessary, the union is already closed.

Eckart-Young Theorem may be understood in this setting.

Dual varieties

If $X \subset \mathbb{P} V$ then

$$
X^{\vee}:=\overline{\left\{H \in \mathbb{P} V^{\vee} \mid \exists \text { smooth point } x \in X \text { s.t. } T_{x} X \subset H\right\}}
$$

is called the dual variety of X. So X^{\vee} consists of hyperplanes tangent at some smooth point of X.
By Terracini Lemma

$$
\sigma_{k}(X)^{\vee}=\left\{H \in P V^{\vee} \mid H \supset T_{x_{1}} X, \ldots, T_{x_{k}} X \text { for smooth points } x_{1}, \ldots, x_{k}\right\}
$$

namely, $\sigma_{k}(X)^{\vee}$ consists of hyperplanes tangent at $\geq k$ smooth points of X.

Duality in euclidean setting

In euclidean setting, duality may be understood in terms of orthogonality.

Considering the affine cone of a projective variety X, the dual variety consists of the cone of all vectors which are orthogonal to some tangent space to X.

Basic dual varieties

The dual variety of $m \times n$ matrices of rank r is given by $m \times n$ matrices of corank r. In particular the dual of the Segre variety of matrices of rank 1 is the determinant hypersurface.
The determinant can be defined by means of projective geometry! The dual variety of tensors of format $\left(m_{0}+1\right) \times\left(m_{1}+1\right) \times\left(m_{2}+1\right)$ is the hyperdeterminant hypersurface, whenever $m_{i} \leq m_{j}+m_{k} \forall i, j, k$.

Expected dimension for secant varieties

Let $X \subset \mathbb{P}^{N}$ be an irreducible variety. The naive dimensional count says that

$$
\operatorname{dim} \sigma_{k}(X)+1 \leq k(\operatorname{dim} X+1)
$$

When $\operatorname{dim} \sigma_{k}(X)=\min \{N, k(\operatorname{dim} X+1)-1\}$ then we say that $\sigma_{k}(X)$ has the expected dimension. Otherwise we say that X is k-defective.
Correspondingly, the expected value for the general X-rank is

$$
\left\lceil\frac{N+1}{\operatorname{dim} X+1}\right\rceil
$$

In defective cases, the general X-rank can be bigger than the expected one.

Basic dimensional computation

If $\sigma_{k}(X)$ has the virtual dimension $\left.k(\operatorname{dim} X+1)-1\right\}$, then the general tensor of rank k has only finitely many decompositions.

This assumption is never satisfied for matrices, when $k \geq 2$. It is likely satisfied for many interesting classes of tensors.

Symmetric tensors $=$ homogeneous polynomials

In the case $V_{1}=\ldots=V_{k}=V$ we may consider symmetric tensors $f \in S^{d} V$.
Elements of $S^{d} V$ can be considered as homogeneous polynomials of degree d in $x_{0}, \ldots x_{n}$, basis of V.
So polynomials have rank (as all tensors) and also symmetric rank (next slides).

Symmetric Tensor Decomposition (Waring)

A Waring decomposition of $f \in S^{d} V$ is

$$
f=\sum_{i=1}^{r} c_{i}\left(l_{i}\right)^{d} \quad \text { with } l_{i} \in V
$$

with minimal r

Example: $7 x^{3}-30 x^{2} y+42 x y^{2}-19 y^{3}=(-x+2 y)^{3}+(2 x-3 y)^{3}$ rk $\left(7 x^{3}-30 x^{2} y+42 x y^{2}-19 y^{3}\right)=2$

Theorem (ccc $\left.\begin{array}{ccc}\text { Campbell, } & \text { Terracini, } & \text { Alexander-Hirschowitz } \\ {[1891]} & {[1916]} & {[1995]}\end{array}\right)$
The general $f \in S^{d} \mathbb{C}^{n+1}(d \geq 3)$ has rank

$$
\left\lceil\frac{\binom{n+d}{d}}{n+1}\right\rceil
$$

which is called the generic rank, with the only exceptions

- $S^{4} \mathbb{C}^{n+1}, \quad 2 \leq n \leq 4$, where the generic rank is $\binom{n+2}{2}$
- $S^{3} \mathbb{C}^{5}$, where the generic rank is 8 , sporadic case

Toward an Alexander-Hirschowitz Theorem in the non symmetric case

Defective examples

$\operatorname{dim} V_{i}=n_{i}+1, n_{1} \leq \ldots \leq n_{k}$
Only known examples where the general $f \in V_{1} \otimes \ldots \otimes V_{k}(k \geq 3)$ has rank different from the generic rank

$$
\left\lceil\frac{\prod\left(n_{i}+1\right)}{\sum n_{i}+1}\right\rceil
$$

are

- unbalanced case, where $n_{k} \geq \prod_{i=1}^{k-1}\left(n_{i}+1\right)-\left(\sum_{i=1}^{k-1} n_{i}\right)+1$, note that for $k=3$ it is simply $n_{3} \geq n_{1} n_{2}+2$
- $k=3,\left(n_{1}, n_{2}, n_{3}\right)=(2, m, m)$ with m even [Strassen],
- $k=3,\left(n_{1}, n_{2}, n_{3}\right)=(2,3,3)$, sporadic case [Abo-O-Peterson]
- $k=4,\left(n_{1}, n_{2}, n_{3}, n_{4}\right)=(1,1, n, n)$

Results in the general case

Theorem (Strassen-Lickteig)

there are no exceptions (no defective cases) $\mathbb{P}^{n} \times \mathbb{P}^{n} \times \mathbb{P}^{n}$ beyond the variety $\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}$

Theorem

- The unbalanced case is completely understood [Catalisano-Geramita-Gimigliano].
- The exceptions listed in the previous slide are the only ones in the cases:
(i) $k=3$ and $n_{i} \leq 9$
(ii) $s \leq 6$ [Abo-O-Peterson]
(iii) $\forall k, n_{i}=1$ (deep result,
[Catalisano-Geramita-Gimigliano])
Proof uses an inductive technique, developed first for $k=3$ in [Bürgisser-Claussen-Shokrollai].

Asymptotical behaviour

[Abo-O-Peterson]

Asymptotically $(n \rightarrow \infty)$, the general rank for tensors in $\mathbb{C}^{n+1} \otimes \ldots \otimes \mathbb{C}^{n+1}(k$ times $)$ tends to

$$
\frac{(n+1)^{k}}{n k+1}
$$

as expected.

Symmetric Rank and Comon Conjecture

The minimum number of summands in a Waring decomposition is called the symmetric rank

Comon Conjecture

Let t be a symmetric tensor. Are the rank and the symmetric rank of t equal ? Comon conjecture gives affirmative answer.

Known to be true when $t \in S^{d} \mathbb{C}^{n+1}, n=1$ or $d=2$ and few other cases.

The problem of counting singular d-ples

How many are the singular d-ples of a general tensor?

In the format $(2,2,2)$ they are 6 , in the format $(3,3,3)$ they are 37. Note they are more than the dimension of the factors, and even more than the dimension of the ambient space.

Theorem (Friedland-O)

The number of singular d-ples of a general tensor
$t \in \mathbb{P}\left(\mathbb{R}^{m_{1}}\right) \times \ldots \times \mathbb{P}\left(\mathbb{R}^{m_{d}}\right)$ over \mathbb{C} of format $\left(m_{1}, \ldots, m_{d}\right)$ is equal to the coefficient of $\prod_{i=1}^{d} t_{i}^{m_{i}-1}$ in the polynomial

$$
\prod_{i=1}^{d} \frac{\hat{t}_{i}^{m_{i}}-t_{i}^{m_{i}}}{\hat{t}_{i}-t_{i}}
$$

where $\hat{t}_{i}=\sum_{j \neq i} t_{j}$
Amazingly, for $d=2$ this formula gives the expected value $\min \left(m_{1}, m_{2}\right)$.

Interpretation with vector bundles

For the proof, we express the d-ples of singular vectors as zero loci of sections of a suitable vector bundle on the Segre variety.
Precisely, let $X=\mathbb{P}\left(\mathbb{C}^{m_{1}}\right) \times \ldots \times \mathbb{P}\left(\mathbb{C}^{m_{d}}\right)$ and let $\pi_{i}: X \rightarrow \mathbb{P}\left(\mathbb{C}^{m_{i}}\right)$ be the projection on the i-th factor. Let $\mathcal{O}(\underbrace{1, \ldots, 1}_{d})$ be the very ample line bundle which gives the Segre embedding.
Then the bundle is $\oplus_{i=1}^{d}\left(\pi_{i}^{*} Q\right)(1,1, \ldots, 1,0,1, \ldots, 1)$
\uparrow
We may conclude with a Chern class computation.
In the format $(\underbrace{2, \ldots, 2}_{d})$ the number of singular d-ples is $d!$.

List for tensors of order 3

List of the number of singular triples in the format $\left(d_{1}, d_{2}, d_{3}\right)$

d_{1}, d_{2}, d_{3}	$c\left(d_{1}, d_{2}, d_{3}\right)$	
$2,2,2$	6	
$2,2, n$	8	$n \geq 3$
$2,3,3$	15	
$2,3, n$	18	$n \geq 4$
$3,3,3$	37	
$3,3,4$	55	
$3,3, n$	61	$n \geq 5$
$3,4,4$	104	
$3,4,5$	138	
$3,4, n$	148	$n \geq 6$

The output stabilizes for (a, b, c) with $c \geq a+b-1$.
For a tensor of size $2 \times 2 \times n$ there are 6 singular vector triples for $n=2$ and 8 singular vector triples for $n>2$.
The format $(a, b, a+b-1)$ is the boundary format, well known in hyperdeterminant theory [Gelfand-Kapranov-Zelevinsky]. It generalizes the square case, a equality holds in triangle inequality.

In the boundary format it is well defined a unique "diagonal" given by the elements $a_{i_{1} \ldots i_{d}}$ which satisfy $i_{1}=\sum_{j=2}^{d} i_{j}$

(indices start from zero).

The symmetric case

Theorem (Cartwright-Sturmfels)

In the symmetric case, a tensor in $S^{d}\left(\mathbb{C}^{m}\right)$ has

$$
\frac{(d-1)^{m}-1}{d-2}
$$

singular vectors (which can be called eigenvectors).
For $d=m=3$ the number of eigenvectors is 7 . In general we compute [Oeding-O]

$$
c_{m-1}\left(T \mathbb{P}^{m-1}(d-2)\right)=\frac{(d-1)^{m}-1}{d-2}
$$

The first proof of the formula in the symmetric case has been given by [Cartwright-Sturmfels] through the computation of a toric volume. It counts the number of eigenvectors of a symmetric tensor.
We have the same geometric interpretation with the Veronese

Euclidean Distance Degree

The construction of critical points of the distance from a point u, can be generalized to any affine (real) algebraic variety. We call Euclidean Distance Degree (shortly ED degree) the number of critical points of $d_{u}=d(u,-): X \rightarrow \mathbb{R}$. As before, the number of critical points does not depend on u, provided u is generic.

Look at Wikipedia animation on "evolute".

Duality for ED

Theorem (Draisma-Horobet-O-Sturmfels-Thomas)

There is a canonical bijection between

- critical points of the distance from p to rank ≤ 1
- critical points of the distance from p to hyperdeterminant hypersurface.
Correspondence is $x \mapsto p-x$
In particular from the 15 critical points for the distance from our $3 \times 3 \times 2$ tensor f to the variety of rank one matrices, we may recover the 15 critical points for the distance from f to hyperdeterminant hypersurface.

Duality for ED, in generality

Theorem (Draisma-Horobet-O-Sturmfels-Thomas)

There is a canonical bijection between

- critical points of the distance from p to a projective variety X
- critical points of the distance from p to the dual variety X^{\vee}.

Correspondence is $x \mapsto p-x$. In particular $\operatorname{EDdegree}(X)=\operatorname{EDdegree}\left(X^{\vee}\right)$

The Catanese-Trifogli formula

There is a formula, due to Catanese and Trifogli, for ED degree in terms of Chern classes, provided X is transversal to the quadric $\sum x_{i}^{2}=0$ of isotropic vectors.
Applying this formula to $n \times n$ matrices of rank $1, n \geq 2$ we get $4,13,40,121, \ldots$ instead of $2,3,4,5, \ldots$ Why ?
Applying this formula to tensors of rank one and format $2 \times 2 \times 2$ we get 34 instead of the expected 6 . Why ?
The reason is that the transversality with respect to the quadric is NOT satisfied. ED degree is invariant by orthogonal transformations, but not by general linear projective transformations.
So the approach considered in [O-Friedland] has to be considered counting critical points for tensors.

Apolarity and Waring decomposition, I

For any $I=\alpha x_{0}+\beta x_{1} \in \mathbb{C}^{2}$ we denote $I^{\perp}=-\beta \partial_{0}+\alpha \partial_{1} \in \mathbb{C}^{2 \vee}$. Note that

$$
\begin{equation*}
I^{\perp}\left(I^{d}\right)=0 \tag{1}
\end{equation*}
$$

so that I^{\perp} is well defined (without referring to coordinates) up to scalar multiples. Let e be an integer. Any $f \in S^{d} \mathbb{C}^{2}$ defines $C_{f}^{e}: S^{e}\left(\mathbb{C}^{2 V}\right) \rightarrow S^{d-e} \mathbb{C}^{2}$
Elements in $S^{e}\left(\mathbb{C}^{2 \vee}\right)$ can be decomposed as $\left(I_{1}^{\perp} \circ \ldots \circ I_{e}^{\perp}\right)$ for some $l_{i} \in \mathbb{C}^{2}$.

Apolarity and Waring decomposition, II

Proposition

Let I_{i} be distinct for $i=1, \ldots, e$. There are $c_{i} \in K$ such that
$f=\sum_{i=1}^{e} c_{i}\left(l_{i}\right)^{d}$ if and only if $\left(I_{1}^{\perp} \circ \ldots \circ I_{e}^{\perp}\right) f=0$
Proof: The implication \Longrightarrow is immediate from (1). It can be summarized by the inclusion
$<\left(I_{1}\right)^{d}, \ldots,\left(I_{e}\right)^{d}>\subseteq \operatorname{ker}\left(I_{1}^{\perp} \circ \ldots \circ I_{e}^{\perp}\right)$. The other inclusion follows by dimensional reasons, because both spaces have dimension e. \square The previous Proposition is the core of the Sylvester algorithm, because the differential operators killing f allow to define the decomposition of f, as we see in the next slide.

Sylvester algorithm for Waring decomposition

Sylvester algorithm for general f Compute the decomposition of a general $f \in S^{d} U$

- Pick a generator g of $\operatorname{ker} C_{f}^{a}$ with $a=\left\lfloor\frac{d+1}{2}\right\rfloor$.
- Decompose g as product of linear factors, $g=\left(I_{1}^{\perp} \circ \ldots \circ I_{r}^{\perp}\right)$
- Solve the system $f=\sum_{i=1}^{r} c_{i}\left(I_{i}\right)^{d}$ in the unknowns c_{i}.

Remark When d is odd the kernel is one-dimensional and the decomposition is unique. When d is even the kernel is two-dimensional and there are infinitely many decompositions.

$$
\left.\begin{array}{l}
\text { If } f(x, y)=a_{0} x^{4}+4 a_{1} x^{3} y+6 a_{2} x^{2} y^{2}+4 a_{3} x y^{3}+a_{4} y^{4} \text { then } \\
C_{f}^{1}=\left[\begin{array}{lll}
a_{0} & a_{1} & a_{2} \\
a_{3} \\
a_{1} & a_{2} & a_{3}
\end{array} a_{4}\right.
\end{array}\right] .
$$

The catalecticant algorithm at work

The catalecticant matrix associated to
$f=7 x^{3}-30 x^{2}+42 x-19=0$ is

$$
A_{f}=\left[\begin{array}{rrr}
7 & -10 & 14 \\
-10 & 14 & -19
\end{array}\right]
$$

ker A_{f} is spanned by $\left[\begin{array}{l}6 \\ 7 \\ 2\end{array}\right]$ which corresponds to
$6 \partial_{x}^{2}+7 \partial_{x} \partial_{y}+2 \partial_{y}^{2}=\left(2 \partial_{x}+\partial_{y}\right)\left(3 \partial_{x}+2 \partial_{y}\right)$
Hence the decomposition

$$
7 x^{3}-30 x^{2} y+42 x y^{2}-19 y^{3}=c_{1}(-x+2 y)^{3}+c_{2}(2 x-3 y)^{3}
$$

Solving the linear system, we get $c_{1}=c_{2}=1$

Another example, Waring decomposition of a quintic in three variables, $3 \times 3 \times 3 \times 3 \times 3$ symmetric tensor.

Hilbert, 1888

The general f of order 5 in three variables has a unique decomposition as a sum of seven powers of linear forms.

As an example we pick
$f=19 x_{0}^{5}+25 x_{0}^{4} x_{1}+44 x_{0}^{3} x_{1}^{2}+35 x_{0}^{2} x_{1}^{3}+30 x_{0} x_{1}^{4}+36 x_{1}^{5}+38 x_{0}^{4} x_{2}+50 x_{0}^{3} x_{1} x_{2}-20 x_{0}^{2} x_{1}^{2} x_{2}+27 x_{0} x_{1}^{3} x_{2}+$
$14 x_{1}^{4} x_{2}-23 x_{0}^{3} x_{2}^{2}+10 x_{0}^{2} x_{1} x_{2}^{2}+45 x_{0} x_{1}^{2} x_{2}^{2}-13 x_{1}^{3} x_{2}^{2}+11 x_{0}^{2} x_{2}^{3}-29 x_{0} x_{1} x_{2}^{3}+29 x_{1}^{2} x_{2}^{3}+13 x_{0} x_{2}^{4}-28 x_{1} x_{2}^{4}+34 x_{2}^{5}$

Question

How to construct explicitly $f=\left.\sum_{i=1}^{7} c_{i}\right|_{i} ^{5}$, with $c_{i} \in \mathbb{C}$ $l_{i}=a_{i} x_{0}+b_{i} x_{1}+c_{i} x_{2}$?

We answer to this question presenting an algorithm (joint works with Landsberg, Oeding). A related powerful approach is due to Bernardi, Brachat, Comon, Mourrain, Tsigaridas.

The contraction map P_{f}

$\operatorname{Hom}\left(S^{2} \mathbb{C}^{3}, \mathbb{C}^{3}\right)$ represents tensors of order 3 partially symmetric in two indices. We construct the map

$$
\operatorname{Hom}\left(S^{2} \mathbb{C}^{3}, \mathbb{C}^{3}\right) \xrightarrow{P_{f}} \operatorname{Hom}\left(\mathbb{C}^{3}, S^{2} \mathbb{C}^{3}\right)
$$

if $f=v^{5}, g \in \operatorname{Hom}\left(S^{2} \mathbb{C}^{3}, \mathbb{C}^{3}\right)$

$$
\begin{equation*}
P_{v^{5}}(g)(w):=\left(g\left(v^{2}\right) \wedge v \wedge w\right) v^{2} \tag{2}
\end{equation*}
$$

and then extended by linearity.
This means $P_{\sum_{i} c_{i} v_{i}^{5}}=\sum_{i} c_{i} P_{v_{i}^{5}}$
The formula (2) is the key to understand the connection between tensor decomposition and eigenvectors.

Connection with tensor decomposition

Lemma

$P_{v^{5}}(M)=0$ if and only if there exists λ such that $M\left(v^{2}\right)=\lambda v$.
If all v_{i} are eigenvectors of g then $g \in \operatorname{ker} P_{\sum_{i} c_{i} v_{i}^{5}}$.
So we have candidates to decompose f : compute the eigenvectors of ker P_{f}.
Luckily P_{f} can be computed without knowing the decomposition $\sum_{i} c_{i} v_{i}^{5}$.
P_{f} is given by a 18×18 matrix and now we construct it.
We compute the three partials
$\frac{\partial f}{\partial x_{0}}=95 x_{0}^{4}+100 x_{0}^{3} x_{1}+132 x_{0}^{2} x_{1}^{2}+70 x_{0} x_{1}^{3}+30 x_{1}^{4}+152 x_{0}^{3} x_{2}+150 x_{0}^{2} x_{1} x_{2}-40 x_{0} x_{1}^{2} x_{2}+27 x_{1}^{3} x_{2}-69 x_{0}^{2} x_{2}^{2}+$
$20 x_{0} x_{1} x_{2}^{2}+45 x_{1}^{2} x_{2}^{2}+22 x_{0} x_{2}^{3}-29 x_{1} x_{2}^{3}+13 x_{2}^{4}$
$\frac{\partial f}{\partial x_{1}}=25 x_{0}^{4}+88 x_{0}^{3} x_{1}+105 x_{0}^{2} x_{1}^{2}+120 x_{0} x_{1}^{3}+180 x_{1}^{4}+50 x_{0}^{3} x_{2}-40 x_{0}^{2} x_{1} x_{2}+81 x_{0} x_{1}^{2} x_{2}+56 x_{1}^{3} x_{2}+10 x_{0}^{2} x_{2}^{2}+$
$90 x_{0} x_{1} x_{2}^{2}-39 x_{1}^{2} x_{2}^{2}-29 x_{0} x_{2}^{3}+58 x_{1} x_{2}^{3}-28 x_{2}^{4}$
$\frac{\partial f}{\partial x_{2}}=38 x_{0}^{4}+50 x_{0}^{3} x_{1}-20 x_{0}^{2} x_{1}^{2}+27 x_{0} x_{1}^{3}+14 x_{1}^{4}-46 x_{0}^{3} x_{2}+20 x_{0}^{2} x_{1} x_{2}+90 x_{0} x_{1}^{2} x_{2}-26 x_{1}^{3} x_{2}+33 x_{0}^{2} x_{2}^{2}-$
$87 x_{0} x_{1} x_{2}^{2}+87 x_{1}^{2} x_{2}^{2}+52 x_{0} x_{2}^{3}-112 x_{1} x_{2}^{3}+170 x_{2}^{4}$

The catalecticant (Sylvester)

To any quartic we can associate the catalecticant matrix constructed in the following way

	∂_{00}	∂_{01}	∂_{02}	∂_{11}	∂_{12}	∂_{22}
∂_{00}						
∂_{01}						
∂_{02}						
∂_{11}						
∂_{12}						
∂_{22}						

$\operatorname{rank}(f)=\operatorname{rank}\left(C_{f}\right)$ it relates the rank of a tensor with the rank of a usual matrix.

The three catalecticant

The three catalecticant matrices corresponding to the three partial
derivatives $\frac{\partial f}{\partial x_{0}}, \frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}$ are $\left(\begin{array}{ccccccc}2280 & 600 & 912 & 528 & 300 & -276 \\ 600 & 528 & 300 & 420 & -80 & 40 \\ 912 & 300 & -276 & -80 & 40 & 132 \\ 528 & 420 & -80 & 720 & 162 & 180 \\ 300 & -80 & 40 & 162 & 180 & -174 \\ -276 & 40 & 132 & 180 & -174 & 312\end{array}\right)$
$\left(\begin{array}{cccccc}600 & 528 & 300 & 420 & -80 & 40 \\ 528 & 420 & -80 & 720 & 162 & 180 \\ 300 & -80 & 40 & 162 & 180 & -174 \\ 420 & 720 & 162 & 4320 & 336 & -156 \\ -80 & 162 & 180 & 336 & -156 & 348 \\ 40 & 180 & -174 & -156 & 348 & -672\end{array}\right)$
$\left(\begin{array}{cccccc}912 & 300 & -276 & -80 & 40 & 132 \\ 300 & -80 & 40 & 162 & 180 & -174 \\ -276 & 40 & 132 & 180 & -174 & 312 \\ -80 & 162 & 180 & 336 & -156 & 348 \\ 40 & 180 & -174 & -156 & 348 & -672 \\ 132 & -174 & 312 & 348 & -672 & 4080\end{array}\right)$

The construction of P_{f}

We get, in exact arithmetic, that the 18×18 matrix of P_{f} is the following block matrix
$\left[\begin{array}{rrrrrr}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -912 & -300 & 276 & 80 & -40 & -132 \\ -300 & 80 & -40 & -162 & -180 & 174 \\ 276 & -40 & -132 & -180 & 174 & -312 \\ 80 & -162 & -180 & -336 & 156 & -348 \\ -40 & -180 & 174 & 156 & -348 & 672 \\ -132 & 174 & -312 & -348 & 672 & -4080 \\ 600 & 528 & 300 & 420 & -80 & 40 \\ 528 & 420 & -80 & 720 & 162 & 180 \\ 300 & -80 & 40 & 162 & 180 & -174 \\ 420 & 720 & 162 & 4320 & 336 & -156 \\ -80 & 162 & 180 & 336 & -156 & 348 \\ 40 & 180 & -174 & -156 & 348 & -672\end{array}\right.$

912	300	-276	-80	40	132
300	-80	40	162	180	-174
-276	40	132	180	-174	312
-80	162	180	336	-156	348
40	180	-174	-156	348	-672
132	-174	312	348	-672	4080
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
-2280	-600	-912	-528	-300	276
-600	-528	-300	-420	80	-40
-912	-300	276	80	-40	-132
-528	-420	80	-720	-162	-180
-300	80	-40	-162	-180	174
276	-40	-132	-180	174	-312

-600	-528	-300
-528	-420	80
-300	80	-40
-420	-720	-162
80	-162	-180
-40	-180	174
2280	600	912
600	528	300
912	300	-276
528	420	-80
300	-80	40
-276	40	132
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0

$\left.\begin{array}{rrr}-420 & 80 & -40 \\ -720 & -162 & -180 \\ -162 & -180 & 174 \\ -4320 & -336 & 156 \\ -336 & 156 & -348 \\ 156 & -348 & 672 \\ 528 & 300 & -276 \\ 420 & -80 & 40 \\ 80 & 40 & 132 \\ 720 & 162 & 180 \\ 162 & 180 & -174 \\ 180 & -174 & 312 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$

Theorem

$$
r(f) \geq \frac{\operatorname{rank}\left(P_{f}\right)}{2}
$$

Note that rank $\left(P_{f}\right)$ is even because P_{f} is skew-symmetric.
Equality holds for f general in the variety of tensors with assigned rank.

It relates the rank of the tensor f with the rank of the matrix P_{f}.

We substitute the seven eigenvectors already computed

$$
\begin{aligned}
& f=c_{0}\left(x_{0}+7.97577 x_{1}+1.82513 x_{2}\right)^{5}+ \\
& c_{1}\left(x_{0}+x_{1}(-6.7325+2.91924 \sqrt{-1})+x_{2}(-3.49842-3.27128 \sqrt{-1})\right)^{5}+ \\
& c_{2}\left(x_{0}+x_{1}(-6.7325-2.91924 \sqrt{-1})+x_{2}(-3.49842+3.27128 \sqrt{-1})\right)^{5}+ \\
& c_{3}\left(x_{0}+(.39844) x_{1}+(.112957) x_{2}\right)^{5}+ \\
& c_{4}\left(x_{0}+x_{1}(.122478+.537715 \sqrt{-1})+x_{2}(-.436832-.342586 \sqrt{-1})\right)^{5}+ \\
& c_{5}\left(x_{0}+x_{1}(.122478-.537715 \sqrt{-1})+x_{2}(-.436832+.342586 \sqrt{-1})\right)^{5}+ \\
& c_{6}\left(x_{0}+(-2.94762) x_{1}+(12.5538) x_{2}\right)^{5}
\end{aligned}
$$

We need just to solve a square system in the seven unknowns $c_{0} \ldots c_{6}$.
This is the Waring decomposition of f

```
f=.0011311(\mp@subsup{x}{0}{}+7.97577\mp@subsup{x}{1}{}+1.82513\mp@subsup{x}{2}{}\mp@subsup{)}{}{5}+
(.000199669 +.000111056\sqrt{}{-1})(\mp@subsup{x}{0}{}+\mp@subsup{x}{1}{}(-6.7325+2.91924\sqrt{}{-1})+\mp@subsup{x}{2}{}(-3.49842-3.27128\sqrt{}{-1})\mp@subsup{)}{}{5}+
(+.000199669-.000111056\sqrt{}{-1})(\mp@subsup{x}{0}{}+\mp@subsup{x}{1}{}(-6.7325-2.91924\sqrt{}{-1})+\mp@subsup{x}{2}{}(-3.49842+3.27128\sqrt{}{-1})\mp@subsup{)}{}{5}+
(24.25)(\mp@subsup{x}{0}{}+(.39844)\mp@subsup{x}{1}{}+(.112957)\mp@subsup{x}{2}{}\mp@subsup{)}{}{5}+
(-2.62582 + 3.74206\sqrt{}{-1})(\mp@subsup{x}{0}{}+\mp@subsup{x}{1}{}(.122478+.537715\sqrt{}{-1})+\mp@subsup{x}{2}{}(-.436832-.342586\sqrt{}{-1})\mp@subsup{)}{}{5}+
(-2.62582-3.74206\sqrt{}{-1})(\mp@subsup{x}{0}{}+\mp@subsup{x}{1}{}(.122478-.537715\sqrt{}{-1})+\mp@subsup{x}{2}{}(-.436832+.342586\sqrt{}{-1})\mp@subsup{)}{}{5}+
(.000108482)(x0 + (-2.94762) \mp@subsup{x}{1}{}+(12.5538)\mp@subsup{x}{2}{}\mp@subsup{)}{}{5}
```


The symmetric case: uniqueness in the subgeneric case

Theorem (Sylvester[1851], Chiantini-Ciliberto, Mella, Ballico, [2002-2005])

The general $f \in S^{d} \mathbb{C}^{n+1}$ of rank s smaller than the generic one has a unique Waring decomposition, with the only exceptions

- rank $s=\binom{n+2}{2}-1$ in $S^{4} \mathbb{C}^{n+1}, 2 \leq n \leq 4$, when there are infinitely many decompositions
- rank 7 in $S^{3} \mathbb{C}^{5}$, when there are infinitely many decompositions
- rank 9 in $S^{6} \mathbb{C}^{3}$, where there are exactly two decompositions
- rank 8 in $S^{4} \mathbb{C}^{4}$, where there are exactly two decompositions
- rank 9 in $S^{3} \mathbb{C}^{6}$, where there are exactly two decompositions

The cases listed in red are called the defective cases.
The cases listed in blue are called the weakly defective cases.

Weakly defective examples

Assume for simplicity $k=3$. Only known examples where the general $f \in V_{1} \otimes V_{2} \otimes V_{3}\left(\operatorname{dim} V_{i}=n_{i}+1\right)$ of subgeneric rank s has a NOT UNIQUE decomposition, besides the defective ones, are

- unbalanced case, rank $s=n_{1} n_{2}+1, n_{3} \geq n_{1} n_{2}+1$
- rank $6\left(n_{1}, n_{2}, n_{3}\right)=(3,3,3)$ where there are two decompositions
- rank $8\left(n_{1}, n_{2}, n_{3}\right)=(2,5,5)$, sporadic case [CO], maybe six decompositions

Theorem

- The unbalanced case is understood [Chiantini-O. [2011]].
- There is a unique decomposition for general tensor of ranks in $\mathbb{C}^{n+1} \otimes \mathbb{C}^{n+1} \otimes \mathbb{C}^{n+1}$
if $s \leq \frac{3 n+1}{2}$ [Kruskal[1977]
if $s \leq \frac{(n+2)^{2}}{16}$ [Chiantini-O. [2011]]
- The exceptions to uniqueness listed in the previous slide are the only ones in the cases $\prod n_{i} \leq 10^{4}$ [Chiantini-O-Vannieuwenhoven [2014]]

Relevance of matrix multiplication algorithm

Many numerical algorithms use matrix multiplication. The complexity of matrix multiplication algorithm is crucial in many numerical routines.

$$
M_{m, n}=\text { space of } m \times n \text { matrices }
$$

Matrix multiplication is a bilinear operation

$$
\begin{aligned}
M_{m, n} \times M_{n, l} & \rightarrow M_{m, l} \\
(A, B) & \mapsto A \cdot B
\end{aligned}
$$

where $A \cdot B=C$ is defined by $c_{i j}=\sum_{k} a_{i k} b_{k j}$.
This usual way to multiply a $m \times n$ matrix with a $n \times I$ matrix requires $m n l$ multiplications and $m l(n-1)$ additions, so asympotically 2 mm elementary operations.
The usual way to multiply two 2×2 matrices requires eight multiplication and four additions.

Rank and complexity

Matrix multiplication can be seen as a tensor
$t_{m, n, l} \in M_{m, n} \otimes M_{n, l} \otimes M_{m, l}$
$t_{m, n, l}(A \otimes B \otimes C)=\sum_{i, j, k} a_{i k} b_{k j} c_{j i}=\operatorname{tr}(A B C)$
and the number of multiplications needed coincides with the rank of $t_{m, n, I}$ with respect to the Segre variety $\mathbb{P} A \times \mathbb{P} B \times \mathbb{P} C$ of decomposable tensors.
Allowing approximations, the border rank of t is a good measure of the complexity of the algorithm of matrix multiplication.

Strassen result on 2×2 multiplication

Strassen showed explicitly

$$
\begin{aligned}
M_{2,2,2}= & a_{11} \otimes b_{11} \otimes c_{11}+a_{12} \otimes b_{21} \otimes c_{11}+a_{21} \otimes b_{11} \otimes c_{21}+a_{22} \otimes b_{21} \otimes c_{21} \\
& +a_{11} \otimes b_{12} \otimes c_{12}+a_{12} \otimes b_{22} \otimes c_{12}+a_{21} \otimes b_{12} \otimes c_{22}+a_{22} \otimes b_{22} \otimes c_{22} \\
= & \left(a_{11}+a_{22}\right) \otimes\left(b_{11}+b_{22}\right) \otimes\left(c_{11}+c_{22}\right)+\left(a_{21}+a_{22}\right) \otimes b_{11} \otimes\left(c_{21}-c_{22}\right) \\
& +a_{11} \otimes\left(b_{12}-b_{22}\right) \otimes\left(c_{12}+c_{22}\right)+a_{22} \otimes\left(-b_{11}+b_{21}\right) \otimes\left(c_{21}+c_{11}\right) \\
& +\left(a_{11}+a_{12}\right) \otimes b_{22} \otimes\left(-c_{11}+c_{12}\right)+\left(-a_{11}+a_{21}\right) \otimes\left(b_{11}+b_{12}\right) \otimes c_{22} \\
& +\left(a_{12}-a_{22}\right) \otimes\left(b_{21}+b_{22}\right) \otimes c_{11} .
\end{aligned}
$$

Implementation of Strassen result

Dividing a matrix of size $2^{n} \times 2^{n}$ into 4 blocks of size $2^{n-1} \times 2^{n-1}$ one shows inductively that are needed 7^{k} multiplications and $9 \cdot 2^{k}+18 \cdot 7^{k-1}$ additions, so in general $\leq C 7^{k}$ elementary operations.
The number 7 of multiplications needed turns out to be the crucial measure.
The exponent of matrix multiplication ω is defined to be $\underline{\lim }_{n} \log _{n}$ of the arithmetic cost to multiply $n \times n$ matrices, or equivalently, $\underline{\lim }_{n} \log _{n}$ of the minimal number of multiplications needed. A consequence of Strassen bound is that $\omega \leq \log _{2} 7=2.81 \ldots$ The border rank in case 3×3 is still unknown.

Thanks !!

