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Tensors

Let Vi be vector spaces over K = R or C. A tensor is an element
f ∈ V1 ⊗ . . .⊗ Vk , that is a multilinear map V ∨1 × . . .× V ∨k → K
A tensor can be visualized as a multidimensional matrix.

Entries of f are labelled by k indices, as ai1...ik
For example, in the case 3× 2× 2, with obvious notations, the
expression in coordinates of a tensor is

a000x0y0z0 + a001x0y0z1 + a010x0y1z0 + a011x0y1z1+

a100x1y0z0 + a101x1y0z1 + a110x1y1z0 + a111x1y1z1+

a200x2y0z0 + a201x2y0z1 + a210x2y1z0 + a211x2y1z1
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Slices

Just as matrices can be cutted in rows or in columns, higher
dimensional tensors can be cut in slices

The three ways to cut a 3× 2× 2 matrix into parallel slices
For a tensor of format n1 × . . .× nk , there are n1 slices of format
n2 × . . .× nk .
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Multidimensional Gauss elimination

We can operate adding linear combinations of a slice to another
slice, just in the case of rows and columns.
This amounts to multiply A of format n1 × . . .× nk for
G1 ∈ GL(n1), then for Gi ∈ GL(ni ).

The group acting is quite big
G = GL(n1)× . . .× GL(nk).
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The group acting, basic computation of dimensions.

The group is big, but not so big...

Let dim Vi = ni

dim V1 ⊗ . . .⊗ Vk =
∏k

i=1 ni

dim GL(n1)× . . .× GL(nk) =
∑k

i=1 n2
i

For k ≥ 3, the dimension of the group is in general much less that
the dimension of the space where it acts.
This makes a strong difference between the classical case k = 2
and the case k ≥ 3.
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Decomposable tensors, of rank one.

We need some “simple” tensors to start with.

Definition

A tensor f is decomposable if there exist x i ∈ Vi for i = 1, . . . , k
such that ai1...ik = x1

i1
x2
i2
. . . xk

ik
. In equivalent way,

f = x1 ⊗ . . .⊗ xk .

For a (nonzero) usual matrix, decomposable ⇐⇒ rank one.
Define the rank of a tensor t as

rk(t) := min{r |t =
r∑

i=1

ti , ti are decomposable}

For matrices, this coincides with usual rank.
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Weierstrass Theorem about Tensor Decomposition in
n × n × 2 case

Theorem (Weierstrass)

A general tensor t of format n × n × 2 has a unique tensor
decomposition as a sum of n decomposable tensors

There is a algorithm to actually decompose such tensors. We see
how it works in a 3× 3× 2 example.
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Tensor decomposition in a 3× 3× 2 example.

We consider the following “random” real tensor

f =6x0y0z0 +2x1y0z0 + 6x2y0z0

− 2014x0y1z0 +121x1y1z0 − 11x2y1z0

+ 48x0y2z0 −13x1y2z0 − 40x2y2z0

− 31x0y0z1 +93x1y0z1 + 97x2y0z1

+ 63x0y1z1 +41x1y1z1 − 94x2y1z1

− 3x0y2z1 +47x1y2z1 + 4x2y2z1

We divide into two 3× 3 slices, like in

=⇒ z0 +z1
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Two slices

Sum the yellow slice plus t times the red slice.

f0 + tf1 = +t

f0 + tf1 =

−31t + 6 63t − 2014 −3t + 48
93t + 2 41t + 121 47t − 13
97t + 6 −94t − 11 4t − 40
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Singular combination of slices

We compute the determinant, which is a cubic polynomial in t

det(f0 + tf1) = 159896t3 − 8746190t2 − 5991900t − 69830

with roots t0 = −.0118594, t1 = −.664996, t2 = 55.3761.

This computation gives a “guess” about the three summands for
zi , (note the sign change!)

f = A0(.0118594z0 + z1)+A1(.664996z0 + z1)+A2(−55.3761z0 + z1)

where Ai are 3× 3 matrices, that we have to find.
Indeed, we get

f0 + tf1 = A0(.0118594 + t) + A1(.664996 + t) + A2(−55.3761 + t)

and for the three roots t = ti one summand vanishes, it remains a
matrix of rank 2, with only two colors, hence with zero
determinant.
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Finding the three matrices from kernels.

In order to find Ai , let a0 =
(
−.0589718 −.964899 .255916

)
, left

kernel of f0 + t0f1

let b0 =
(
−.992905 −.00596967 −.118765

)
, transpose of right

kernel of f0 + t0f1.
In the same way, denote
a1 = left kernel of f0 + t1f1, a2 = left kernel of f0 + t2f1

b1 = transpose of right kernel of f0 + t1f1, b2 = transpose of
right kernel of f0 + t2f1,

aa =

a0

a1

a2

 =

−.0589718 −.964899 .255916
−.014181 −.702203 .711835
.959077 .0239747 .282128


bb =

b0

b1

b2

 =

−.992905 −.00596967 −.118765
.582076 −.0122361 −.813043
.316392 .294791 −.901662
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Inversion and summands of tensor decomposition

Now we invert the two matrices

aa−1 =

 .450492 −.582772 1.06175
−1.43768 .548689 −.0802873
−1.40925 1.93447 −.0580488


bb−1 =

−.923877 .148851 −.0125305
−.986098 −3.43755 3.22958
−.646584 −1.07165 −.0575754


The first summand A0 is given by a scalar c0 multiplied by
(.450492x0 − 1.43768x1 − 1.40925x2)(−.923877y0 − .986098y1 −
.646584y2)
the same for the other colors.
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Decomposition as sum of three terms

By solving a linear system, we get the scalars ci
(.450492x0 − 1.43768x1 − 1.40925x2)(−.923877y0 − .986098y1 − .646584y2)(.809777z0 + 68.2814z1) +

(−.582772x0 + .548689x1 + 1.93447x2)(.148851y0 − 3.43755y1 − 1.07165y2)(18.6866z0 + 28.1003z1) +

(1.06175x0 − .0802873x1 − .0580488x2)(−.0125305y0 + 3.22958y1 − .0575754y2)(−598.154z0 + 10.8017z1)

and the sum is

6x0y0z0 + 2x1y0z0 +6x2y0z0

−2014x0y1z0 + 121x1y1z0 −11x2y1z0

+48x0y2z0 − 13x1y2z0 −40x2y2z0

−31x0y0z1 + 93x1y0z1 +97x2y0z1

+63x0y1z1 + 41x1y1z1 −94x2y1z1

−3x0y2z1 + 47x1y2z1 +4x2y2z1

The rank of the tensor f is 3, because we have 3 summands, and
no less.
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Uniqueness of the decomposition

The decomposition we have found is unique, up to reordering the
summands.
This is a strong difference with the case of matrices, where any
decomposition with at least two summands is never unique.

For tensors f of rank ≤ 2,the characteristic polynomial vanishes
identically.
We understand this phenomenon geometrically, in a while.
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Coincident roots, hyperdeterminant

What happens if we have two coincident roots in det(f0 + tf1) ?

In this case, the discriminant of characteristic polynomial vanishes,
the discriminant is an invariant of the tensor, called the
hyperdeterminant.

The hyperdeterminant of format n × n × 2 has degree
2n(n − 1) = 4

(n
2

)
.

References
[Gelfand-Kapranov-Zelevinsky] Discriminants, resultants and
multidimensional determinants, Birkhauser.

[O] An introduction to the hyperdeterminant and to the rank of

multidimensional matrices. (book chapter, available on arXiv)
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The hyperdeterminant of a general tensor

The hyperdeterminant of a tensor f ∈ V1 ⊗ V2 ⊗ V3 vanishes if
and only if there exist nonzero x i ∈ Vi such that

f (−, x2, x3) = f (x1,−, x3) = f (x1, x2,−) = 0.

It is a codimension 1 condition if the triangle inequality holds

(dim Vi − 1) ≤ (dim Vj − 1) + (dim Vk − 1) ∀i , j , k,

which is the assumption for the hyperdeterminant to exist.

A picture is useful. Det(f ) = 0 if and only if, after a linear change
of coordinates, f is zero on the “red corner”.
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The generating function for degree of the
hyperdeterminant

Let N(k0, k1, k2) be the degree of the hyperdeterminant of format
(k0 + 1)× (k1 + 1)× (k2 + 1).

Theorem ([GKZ] Thm. XIV 2.4)

∑
k0,k1,k2≥0

N(k0, k1, k2)z
k0
0 zk1

1 zk2
2 =

1

(1− (z0z1 + z0z2 + z1z2)− 2z0z1z2)
2
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List of degree of hyperdeterminants of format (a, b, c)

format degree boundary format

(1, a, a) a ∗
(2, 2, 2) 4
(2, 2, 3) 6 ∗
(2, 3, 3) 12
(2, 3, 4) 12 ∗
(2, 4, 4) 24
(2, 4, 5) 20
(3, 3, 3) 36
(3, 3, 4) 48
(3, 3, 5) 30 ∗
(3, 4, 4) 108
(3, 4, 5) 120
(4, 4, 4) 272
(2, b, b) 2b(b − 1)

(2, b, b + 1) b(b + 1) ∗
(a, b, a+ b − 1) (a+b−1)!

(a−1)!(b−1)!
∗
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Symultaneous diagonalization, Corollary of Weierstrass
Theorem

Corollary

For any tensor f of format n × n × 2, such that Det(f ) 6= 0, with
slices f0, f1, there are invertibles matrix G ,H ∈ GL(n) such that
GfiH is diagonal for i = 1, 2. Gf0H may be assumed to be the
identity.

Expression of hyperdeterminant
If Gf0H = Idn, Gf1H = Diag(λ1, . . . , λn) then

Det(GfH) =
∏
i<j

(λi − λj)2.
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The rank may depend on the field.

• What happens if we have a pair of complex imaginary roots ?

On complex numbers, we still have rank 3. But on real numbers,
the rank becomes 4 [tenBerge, 2000].
On 3×3×2 case, this is governed by the sign of hyperdeterminant.
Unless a set of measure zero, the following holds{

Det(f ) > 0 =⇒ rkR(f ) = 3
Det(f ) < 0 =⇒ rkR(f ) = 4.

If the tensor is chosen randomly, according to normal distribution,
the probability to get rank 3 is exactly 1

2 [Bergqvist, 2011].

The rank may depend on the field, in contrast to the matrix case.
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Typical real ranks of n × n × 2 tensors.

Ranks which are attained in subsets of positive measure are called
typical ranks. On C there is only one typical rank. On R there may
be several typical ranks, the smallest one coincide with the
complex one.

tenBerge proves that for format n × n × 2, the typical ranks are n
or n + 1, depending on the characteristic polynomial having n real
roots or not (the condition is that the Bezoutian must be positive
definite).
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Semialgebraic sets and best rank approximation

So in 3× 3× 2 case, the hyperdeterminant divides the space in
two regions, where the real rank is 3 or 4. But the rank on the
hypersurface can be 1,2 or 4, never 3. So for tensors of rank 4, the
best rank three approximation does not exist on real numbers.
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Best rank one approximation

The distance of our tensor f of format 3× 3× 2 from the three
summands of its tensor decomposition , according to the L2-norm
(euclidean), is respectively

2031.02 , 2071.18 , 4427.47.

May we have a smaller distance to other rank one tensors ?

In order to find the best rank one approximation of f we may
compute all critical points x for the distance from f to the variety
of rank 1 matrices. The condition is that the tangent space at x is
orthogonal to the vector f − x .
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Recall SVD and Eckart-Young theorem

Any matrix A has the SVD decomposition

A = UΣV t

where U, V are orthogonal and σ = Diag(σ1, σ2, . . .), with
σ1 ≥ σ2 ≥ . . .. Decomposing
Σ = Diag(σ1, 0, 0, . . .) + Diag(0, σ2, 0, . . .) + . . . = Σ1 + Σ2 + . . .
we find

A = UΣ1V t + UΣ2V t + . . .

Theorem (Eckart-Young, 1936)

UΣ1V t is the best rank 1 approximation of A, that is
|A− UΣ1V t | ≤ |A− X | for every rank 1 matrix X .

UΣ1V t + UΣ2V t is the best rank 2 approximation of A, that
is |A− UΣ1V t − UΣ2V t | ≤ |A− X | for every rank ≤ 2
matrix X .

So on, for any rank.
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Best rank approximation and tensor decomposition

Among the infinitely many tensor decompositions available for
matrices, Eckart-Young Theorems detects one of them, which is
particularly nice in optimization problems.

For tensors we have no choices, because the tensor decomposition
is often unique (precise statement later). It is unique in n × n × 2
case. Does it help in best rank approximation ? The answer is
negative, due to a subtle fact we are going to explain.
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Eckart-Young revisited.

In the SVD A = UΣV t , the columns ui of U and vi of V satisfy
the conditions Avi = σiui , Atui = σivi .
(ui , vi ) is called a singular vector pair. They are all the critical
points of the distance from A to the variety of rank one matrices.

Theorem (Eckart-Young revisited)

All critical points of the distance from A to the variety of rank ≤ r
matrices are given by UΣi1V t + . . .+ UΣir V

t , their number is
(n
r

)
.
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Lim (2000), variational principle

Looking at critical points of the distance, for tensors of format
m1 × . . .×md we get singular vector d-ples, a notion analogous to
singular vector pairs for matrices.

Theorem (Lim)

The critical points of the distance from f ∈ Rn ⊗ Rn ⊗ R2 to the
variety of rank 1 tensors are given by triples
(x , y , z) ∈ Rn × Rn × R2 such that

f · (x ⊗ y) = λz,

f · (y ⊗ z) = λx,

f · (z ⊗ x) = λy.

(x ⊗ y ⊗ z) in Lim Theorem is called a singular vector triple
(defined independently by Qi). λ is called a singular value.
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15 singular vector triples for our tensor f of format
3× 3× 2

We may compute all singular vector triples for

f =6x0y0z0 +2x1y0z0 + 6x2y0z0

− 2014x0y1z0 +121x1y1z0 − 11x2y1z0

+ 48x0y2z0 −13x1y2z0 − 40x2y2z0

− 31x0y0z1 +93x1y0z1 + 97x2y0z1

+ 63x0y1z1 +41x1y1z1 − 94x2y1z1

− 3x0y2z1 +47x1y2z1 + 4x2y2z1

We find 15 singular vector triples, 9 of them are real, 6 of them
make 3 conjugate pairs.
The minimum distance is 184.038, and the best rank one
approximation is given by the singular vector triple
(x0 − .0595538x1 + .00358519x2)(y0 − 289.637y1 + 6.98717)(6.95378z0 − .2079687z1).

It is unrelated to the three summands of tensor decomposition, in
contrast with Eckart-Young Theorem for matrices.
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Why Eckart-Young theorem does not hold for tensors ?

The way Eckart-Young generalizes to tensors is more subtle.

Theorem (Draisma-Horobet-O-Sturmfels-Thomas)

The 15 critical points pi satisfy

Det(f − pi ) = 0

It is part of a more general theory about critical points (after
coffee break!).
The phenomenon of the Theorem was first found by
[Stegeman-Comon] in 2× 2× 2 case, where they showed by
examples that subtracting the best rank 1 approximation, may
increase the tensor rank !
In case n × n × 2, there are

(2n
2

)
= n(2n − 1) critical values,
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Why geometry?

Corrado Segre in XIX century understood the tensor decomposition
involved in Weierstrass Theorem in terms of projective geometry.
The tensor t is a point of the space P(C3 ⊗ C3 ⊗ C2).
The decomposable tensors make the “Segre variety”

X = P(C3)× P(C3)× P(C2) → P(C3 ⊗ C3 ⊗ C2)

From f there is a unique secant plane meeting X in three points.
This point of view is extremely useful also today.

J.M. Landsberg, Tensors: Geometry and Applications, AMS 2012
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Secant varieties

Secant varieties give basic interpretation of rank of tensors in
Geometry.
Let X ⊂ PV be irreducible variety.

σk(X ) :=
⋃

x1,...,xk∈X
< x1, . . . , xk >

where < x1, . . . , xk > is the projective span.
There is a filtration X = σ1(X ) ⊂ σ2(X ) ⊂ . . .
This ascending chain stabilizes when it fills the ambient space.
So min{k|σk(X ) = PV } is called the generic X -rank.
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Terracini Lemma

Terracini Lemma describes the tangent space at a secant variety

Lemma

Terracini Let z ∈< x1, . . . , xk > be general. Then
Tzσk(X ) =< Tx1X , . . . ,Txk X >
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Examples of secant varieties

X = PV × PW
Then σk(X ) parametrizes linear maps V ∨ →W of rank ≤ k .
In this case the Zariski closure is not necessary, the union is already
closed.

Eckart-Young Theorem may be understood in this setting.
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Dual varieties

If X ⊂ PV then

X∨ := {H ∈ PV ∨|∃ smooth point x ∈ X s.t. TxX ⊂ H}

is called the dual variety of X . So X∨ consists of hyperplanes
tangent at some smooth point of X .
By Terracini Lemma

σk(X )∨ = {H ∈ PV∨|H ⊃ Tx1X , . . . ,TxkX for smooth points x1, . . . , xk}

namely, σk(X )∨ consists of hyperplanes tangent at ≥ k smooth
points of X .
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Duality in euclidean setting

In euclidean setting, duality may be understood in terms of
orthogonality.

Considering the affine cone of a projective variety X , the dual
variety consists of the cone of all vectors which are orthogonal to
some tangent space to X .
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Basic dual varieties

The dual variety of m × n matrices of rank r is given by m × n
matrices of corank r . In particular the dual of the Segre variety of
matrices of rank 1 is the determinant hypersurface.
The determinant can be defined by means of projective geometry!
The dual variety of tensors of format
(m0 + 1)× (m1 + 1)× (m2 + 1) is the hyperdeterminant
hypersurface, whenever mi ≤ mj + mk ∀i , j , k .
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Expected dimension for secant varieties

Let X ⊂ PN be an irreducible variety.
The naive dimensional count says that

dimσk(X ) + 1 ≤ k(dim X + 1)

When dimσk(X ) = min{N, k(dim X + 1)− 1} then we say that
σk(X ) has the expected dimension. Otherwise we say that X is
k-defective.
Correspondingly, the expected value for the general X -rank is

d N + 1

dim X + 1
e

In defective cases, the general X -rank can be bigger than the
expected one.
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Basic dimensional computation

If σk(X ) has the virtual dimension k(dim X + 1)− 1}, then the
general tensor of rank k has only finitely many decompositions.

This assumption is never satisfied for matrices, when k ≥ 2. It is
likely satisfied for many interesting classes of tensors.
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Symmetric tensors = homogeneous polynomials

In the case V1 = . . . = Vk = V we may consider symmetric tensors
f ∈ SdV .
Elements of SdV can be considered as homogeneous polynomials
of degree d in x0, . . . xn, basis of V .
So polynomials have rank (as all tensors) and also symmetric rank
(next slides).

Giorgio Ottaviani Tutorial on Tensor rank and tensor decomposition



Symmetric Tensor Decomposition (Waring)

A Waring decomposition of f ∈ SdV is

f =
r∑

i=1

ci (li )
d with li ∈ V

with minimal r

Example: 7x3 − 30x2y + 42xy 2 − 19y 3 = (−x + 2y)3 + (2x − 3y)3

rk
(
7x3 − 30x2y + 42xy 2 − 19y 3

)
= 2
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Symmetric case: the Alexander-Hirschowitz Theorem

Theorem (
Campbell, Terracini, Alexander-Hirschowitz

[1891] [1916] [1995]
)

The general f ∈ SdCn+1 (d ≥ 3) has rank

d
(n+d

d

)
n + 1

e

which is called the generic rank, with the only exceptions

S4Cn+1, 2 ≤ n ≤ 4, where the generic rank is
(n+2

2

)
S3C5, where the generic rank is 8, sporadic case
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Toward an Alexander-Hirschowitz Theorem in the non
symmetric case

Defective examples

dim Vi = ni + 1, n1 ≤ . . . ≤ nk

Only known examples where the general f ∈ V1 ⊗ . . .⊗Vk (k ≥ 3)
has rank different from the generic rank

d
∏

(ni + 1)∑
ni + 1

e

are

unbalanced case, where nk ≥
∏k−1

i=1 (ni + 1)−
(∑k−1

i=1 ni

)
+ 1,

note that for k = 3 it is simply n3 ≥ n1n2 + 2

k = 3, (n1, n2, n3) = (2,m,m) with m even [Strassen],

k = 3, (n1, n2, n3) = (2, 3, 3), sporadic case [Abo-O-Peterson]

k = 4, (n1, n2, n3, n4) = (1, 1, n, n)
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Results in the general case

Theorem (Strassen-Lickteig)

there are no exceptions (no defective cases) Pn × Pn × Pn beyond
the variety P2 × P2 × P2

Theorem

The unbalanced case is completely understood
[Catalisano-Geramita-Gimigliano].

The exceptions listed in the previous slide are the only ones in
the cases:
(i) k = 3 and ni ≤ 9
(ii) s ≤ 6 [Abo-O-Peterson]
(iii) ∀k, ni = 1 (deep result,
[Catalisano-Geramita-Gimigliano])

Proof uses an inductive technique, developed first for k = 3 in
[Bürgisser-Claussen-Shokrollai].
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Asymptotical behaviour

[Abo-O-Peterson]

Asymptotically (n→∞), the general rank for tensors in
Cn+1 ⊗ . . .⊗ Cn+1 (k times) tends to

(n + 1)k

nk + 1

as expected.
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Symmetric Rank and Comon Conjecture

The minimum number of summands in a Waring decomposition is
called the symmetric rank

Comon Conjecture

Let t be a symmetric tensor. Are the rank and the symmetric rank
of t equal ? Comon conjecture gives affirmative answer.

Known to be true when t ∈ SdCn+1, n = 1 or d = 2 and few other
cases.
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The problem of counting singular d-ples

How many are the singular d-ples of a general tensor?

In the format (2, 2, 2) they are 6, in the format (3, 3, 3) they are
37. Note they are more than the dimension of the factors, and
even more than the dimension of the ambient space.
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The number of singular vector d-ples

Theorem (Friedland-O)

The number of singular d-ples of a general tensor
t ∈ P(Rm1)× . . .× P(Rmd ) over C of format (m1, . . . ,md) is equal
to the coefficient of

∏d
i=1 tmi−1

i in the polynomial

d∏
i=1

t̂i
mi − tmi

i

t̂i − ti

where t̂i =
∑

j 6=i tj

Amazingly, for d = 2 this formula gives the expected value
min(m1,m2).
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Interpretation with vector bundles

For the proof, we express the d-ples of singular vectors as zero loci
of sections of a suitable vector bundle on the Segre variety.
Precisely, let X = P(Cm1)× . . .× P(Cmd ) and let πi : X → P(Cmi )
be the projection on the i-th factor. Let O(1, . . . , 1︸ ︷︷ ︸

d

) be the very

ample line bundle which gives the Segre embedding.

Then the bundle is ⊕d
i=1 (π∗i Q) ( 1 , 1 , . . . , 1 , 0 , 1, . . . , 1)

↑
i

We may conclude with a Chern class computation.

In the format (2, . . . , 2︸ ︷︷ ︸
d

) the number of singular d-ples is d!.
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List for tensors of order 3

List of the number of singular triples in the format (d1, d2, d3)

d1, d2, d3 c(d1, d2, d3)

2, 2, 2 6
2, 2, n 8 n ≥ 3
2, 3, 3 15
2, 3, n 18 n ≥ 4
3, 3, 3 37
3, 3, 4 55
3, 3, n 61 n ≥ 5
3, 4, 4 104
3, 4, 5 138
3, 4, n 148 n ≥ 6
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The stabilization property

The output stabilizes for (a, b, c) with c ≥ a + b − 1.
For a tensor of size 2× 2× n there are 6 singular vector triples for
n = 2 and 8 singular vector triples for n > 2.
The format (a, b, a + b − 1) is the boundary format, well known in
hyperdeterminant theory [Gelfand-Kapranov-Zelevinsky]. It
generalizes the square case, a equality holds in triangle inequality.
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The diagonal is well defined in the boundary format case.

In the boundary format it is well defined a unique “diagonal” given
by the elements ai1...id which satisfy i1 =

∑d
j=2 ij

(indices start from zero).
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The symmetric case

Theorem (Cartwright-Sturmfels)

In the symmetric case, a tensor in Sd(Cm) has

(d − 1)m − 1

d − 2

singular vectors (which can be called eigenvectors).

For d = m = 3 the number of eigenvectors is 7. In general we
compute [Oeding-O]

cm−1(TPm−1(d − 2)) =
(d − 1)m − 1

d − 2

The first proof of the formula in the symmetric case has been given
by [Cartwright-Sturmfels] through the computation of a toric
volume. It counts the number of eigenvectors of a symmetric
tensor.
We have the same geometric interpretation with the Veronese
variety at the place of the Segre variety.Giorgio Ottaviani Tutorial on Tensor rank and tensor decomposition



Euclidean Distance Degree

The construction of critical points of the distance from a point u,
can be generalized to any affine (real) algebraic variety.
We call Euclidean Distance Degree (shortly ED degree) the number
of critical points of du = d(u,−) : X → R. As before, the number
of critical points does not depend on u, provided u is generic.

Look at Wikipedia animation on “evolute”.
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Duality for ED

Theorem (Draisma-Horobet-O-Sturmfels-Thomas)

There is a canonical bijection between

critical points of the distance from p to rank ≤ 1

critical points of the distance from p to hyperdeterminant
hypersurface.

Correspondence is x 7→ p − x

In particular from the 15 critical points for the distance from our
3× 3× 2 tensor f to the variety of rank one matrices, we may
recover the 15 critical points for the distance from f to
hyperdeterminant hypersurface.
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Duality for ED, in generality

Theorem (Draisma-Horobet-O-Sturmfels-Thomas)

There is a canonical bijection between

critical points of the distance from p to a projective variety X

critical points of the distance from p to the dual variety X∨.

Correspondence is x 7→ p − x. In particular
EDdegree(X ) = EDdegree(X∨)
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The Catanese-Trifogli formula

There is a formula, due to Catanese and Trifogli, for ED degree in
terms of Chern classes, provided X is transversal to the quadric∑

x2
i = 0 of isotropic vectors.

Applying this formula to n × n matrices of rank 1, n ≥ 2 we get
4, 13, 40, 121, . . . instead of 2, 3, 4, 5, . . .. Why ?
Applying this formula to tensors of rank one and format 2× 2× 2
we get 34 instead of the expected 6. Why ?
The reason is that the transversality with respect to the quadric is
NOT satisfied. ED degree is invariant by orthogonal
transformations, but not by general linear projective
transformations.
So the approach considered in [O-Friedland] has to be considered
counting critical points for tensors.
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Apolarity and Waring decomposition, I

For any l = αx0 + βx1 ∈ C2 we denote l⊥ = −β∂0 + α∂1 ∈ C2∨.
Note that

l⊥(ld) = 0 (1)

so that l⊥ is well defined (without referring to coordinates) up to
scalar multiples. Let e be an integer. Any f ∈ SdC2 defines
C e
f : Se(C2∨)→ Sd−eC2

Elements in Se(C2∨) can be decomposed as (l⊥1 ◦ . . . ◦ l⊥e ) for
some li ∈ C2.
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Apolarity and Waring decomposition, II

Proposition

Let li be distinct for i = 1, . . . , e. There are ci ∈ K such that
f =

∑e
i=1 ci (li )

d if and only if (l⊥1 ◦ . . . ◦ l⊥e )f = 0

Proof: The implication =⇒ is immediate from (1). It can be
summarized by the inclusion
< (l1)d , . . . , (le)d >⊆ ker(l⊥1 ◦ . . . ◦ l⊥e ). The other inclusion follows
by dimensional reasons, because both spaces have dimension e.
The previous Proposition is the core of the Sylvester algorithm,
because the differential operators killing f allow to define the
decomposition of f , as we see in the next slide.
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Sylvester algorithm for Waring decomposition

Sylvester algorithm for general f Compute the decomposition of
a general f ∈ SdU

Pick a generator g of ker C a
f with a = bd+1

2 c.
Decompose g as product of linear factors, g = (l⊥1 ◦ . . . ◦ l⊥r )

Solve the system f =
∑r

i=1 ci (li )
d in the unknowns ci .

Remark When d is odd the kernel is one-dimensional and the
decomposition is unique. When d is even the kernel is
two-dimensional and there are infinitely many decompositions.
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The catalecticant matrices for two variables

If f (x , y) = a0x4 + 4a1x3y + 6a2x2y 2 + 4a3xy 3 + a4y 4 then

C 1
f =

[
a0 a1 a2 a3

a1 a2 a3 a4

]
and

C 2
f =

 a0 a1 a2

a1 a2 a3

a2 a3 a4
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The catalecticant algorithm at work

The catalecticant matrix associated to
f = 7x3 − 30x2 + 42x − 19 = 0 is

Af =

[
7 −10 14

−10 14 −19

]

ker Af is spanned by

 6
7
2

 which corresponds to

6∂2
x + 7∂x∂y + 2∂2

y = (2∂x + ∂y )(3∂x + 2∂y )

Hence the decomposition

7x3 − 30x2y + 42xy 2 − 19y 3 = c1(−x + 2y)3 + c2(2x − 3y)3

Solving the linear system, we get c1 = c2 = 1
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Another example, Waring decomposition of a quintic in
three variables, 3× 3× 3× 3× 3 symmetric tensor.

Hilbert, 1888

The general f of order 5 in three variables has a unique
decomposition as a sum of seven powers of linear forms.

As an example we pick
f = 19x5

0 + 25x4
0 x1 + 44x3

0 x
2
1 + 35x2

0 x
3
1 + 30x0x

4
1 + 36x5

1 + 38x4
0 x2 + 50x3

0 x1x2 − 20x2
0 x

2
1 x2 + 27x0x

3
1 x2 +

14x4
1 x2 − 23x3

0 x
2
2 + 10x2

0 x1x
2
2 + 45x0x

2
1 x

2
2 − 13x3

1 x
2
2 + 11x2

0 x
3
2 − 29x0x1x

3
2 + 29x2

1 x
3
2 + 13x0x

4
2 − 28x1x

4
2 + 34x5

2

Question

How to construct explicitly f =
∑7

i=1 ci l
5
i , with ci ∈ C

li = aix0 + bix1 + cix2 ?

We answer to this question presenting an algorithm (joint works
with Landsberg, Oeding). A related powerful approach is due to
Bernardi, Brachat, Comon, Mourrain, Tsigaridas.

Giorgio Ottaviani Tutorial on Tensor rank and tensor decomposition



The contraction map Pf

Hom(S2C3,C3) represents tensors of order 3 partially symmetric in two indices.

We construct the map

Hom(S2C3,C3)
Pf−→Hom(C3, S2C3)

if f = v 5, g ∈ Hom(S2C3,C3)

Pv5(g)(w) :=
(
g(v 2) ∧ v ∧ w

)
v 2 (2)

and then extended by linearity.
This means P∑

i civ
5
i

=
∑

i ciPv5
i

The formula (2) is the key to understand the connection between
tensor decomposition and eigenvectors.
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Connection with tensor decomposition

Lemma

Pv5(M) = 0 if and only if there exists λ such that M(v 2) = λv.

If all vi are eigenvectors of g then g ∈ ker P∑
i civ

5
i
.

So we have candidates to decompose f : compute the eigenvectors
of ker Pf .
Luckily Pf can be computed without knowing the decomposition∑

i civ
5
i .

Pf is given by a 18× 18 matrix and now we construct it.
We compute the three partials
∂f
∂x0

= 95x4
0 + 100x3

0 x1 + 132x2
0 x

2
1 + 70x0x

3
1 + 30x4

1 + 152x3
0 x2 + 150x2

0 x1x2 − 40x0x
2
1 x2 + 27x3

1 x2 − 69x2
0 x

2
2 +

20x0x1x
2
2 + 45x2

1 x
2
2 + 22x0x

3
2 − 29x1x

3
2 + 13x4

2

∂f
∂x1

= 25x4
0 + 88x3

0 x1 + 105x2
0 x

2
1 + 120x0x

3
1 + 180x4

1 + 50x3
0 x2 − 40x2

0 x1x2 + 81x0x
2
1 x2 + 56x3

1 x2 + 10x2
0 x

2
2 +

90x0x1x
2
2 − 39x2

1 x
2
2 − 29x0x

3
2 + 58x1x

3
2 − 28x4

2

∂f
∂x2

= 38x4
0 + 50x3

0 x1 − 20x2
0 x

2
1 + 27x0x

3
1 + 14x4

1 − 46x3
0 x2 + 20x2

0 x1x2 + 90x0x
2
1 x2 − 26x3

1 x2 + 33x2
0 x

2
2 −

87x0x1x
2
2 + 87x2

1 x
2
2 + 52x0x

3
2 − 112x1x

3
2 + 170x4

2
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The catalecticant (Sylvester)

To any quartic we can associate the catalecticant matrix
constructed in the following way

∂00 ∂01 ∂02 ∂11 ∂12 ∂22

∂00

∂01

∂02

∂11

∂12

∂22

rank(f ) = rank(Cf ) it relates the rank of a tensor with the rank of
a usual matrix.
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The three catalecticant

The three catalecticant matrices corresponding to the three partial

derivatives ∂f
∂x0

, ∂f
∂x1

, ∂f
∂x2

are


2280 600 912 528 300 −276
600 528 300 420 −80 40
912 300 −276 −80 40 132
528 420 −80 720 162 180
300 −80 40 162 180 −174
−276 40 132 180 −174 312




600 528 300 420 −80 40
528 420 −80 720 162 180
300 −80 40 162 180 −174
420 720 162 4320 336 −156
−80 162 180 336 −156 348
40 180 −174 −156 348 −672




912 300 −276 −80 40 132
300 −80 40 162 180 −174
−276 40 132 180 −174 312
−80 162 180 336 −156 348
40 180 −174 −156 348 −672

132 −174 312 348 −672 4080
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The construction of Pf

We get, in exact arithmetic, that the 18× 18 matrix of Pf is the
following block matrix


0 0 0 0 0 0 912 300 −276 −80 40 132 −600 −528 −300 −420 80 −40
0 0 0 0 0 0 300 −80 40 162 180 −174 −528 −420 80 −720 −162 −180
0 0 0 0 0 0 −276 40 132 180 −174 312 −300 80 −40 −162 −180 174
0 0 0 0 0 0 −80 162 180 336 −156 348 −420 −720 −162 −4320 −336 156
0 0 0 0 0 0 40 180 −174 −156 348 −672 80 −162 −180 −336 156 −348
0 0 0 0 0 0 132 −174 312 348 −672 4080 −40 −180 174 156 −348 672

−912 −300 276 80 −40 −132 0 0 0 0 0 0 2280 600 912 528 300 −276
−300 80 −40 −162 −180 174 0 0 0 0 0 0 600 528 300 420 −80 40

276 −40 −132 −180 174 −312 0 0 0 0 0 0 912 300 −276 −80 40 132
80 −162 −180 −336 156 −348 0 0 0 0 0 0 528 420 −80 720 162 180

−40 −180 174 156 −348 672 0 0 0 0 0 0 300 −80 40 162 180 −174
−132 174 −312 −348 672 −4080 0 0 0 0 0 0 −276 40 132 180 −174 312

600 528 300 420 −80 40 −2280 −600 −912 −528 −300 276 0 0 0 0 0 0
528 420 −80 720 162 180 −600 −528 −300 −420 80 −40 0 0 0 0 0 0
300 −80 40 162 180 −174 −912 −300 276 80 −40 −132 0 0 0 0 0 0
420 720 162 4320 336 −156 −528 −420 80 −720 −162 −180 0 0 0 0 0 0

−80 162 180 336 −156 348 −300 80 −40 −162 −180 174 0 0 0 0 0 0
40 180 −174 −156 348 −672 276 −40 −132 −180 174 −312 0 0 0 0 0 0



Theorem

r(f ) ≥ rank (Pf )

2

Note that rank (Pf ) is even because Pf is skew-symmetric.
Equality holds for f general in the variety of tensors with assigned
rank.

It relates the rank of the tensor f with the rank of the matrix Pf .
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The decomposition of f

We substitute the seven eigenvectors already computed
f = c0(x0 + 7.97577x1 + 1.82513x2)5+

c1(x0 + x1(−6.7325 + 2.91924
√
−1) + x2(−3.49842− 3.27128

√
−1))5+

c2(x0 + x1(−6.7325− 2.91924
√
−1) + x2(−3.49842 + 3.27128

√
−1))5+

c3(x0 + (.39844)x1 + (.112957)x2)5+

c4(x0 + x1(.122478 + .537715
√
−1) + x2(−.436832− .342586

√
−1))5+

c5(x0 + x1(.122478− .537715
√
−1) + x2(−.436832 + .342586

√
−1))5+

c6(x0 + (−2.94762)x1 + (12.5538)x2)5

We need just to solve a square system in the seven unknowns c0 . . . c6.

This is the Waring decomposition of f
f = .0011311(x0 + 7.97577x1 + 1.82513x2)5+

(.000199669 + .000111056
√
−1)(x0 + x1(−6.7325 + 2.91924

√
−1) + x2(−3.49842− 3.27128

√
−1))5+

(+.000199669− .000111056
√
−1)(x0 + x1(−6.7325− 2.91924

√
−1) + x2(−3.49842 + 3.27128

√
−1))5+

(24.25)(x0 + (.39844)x1 + (.112957)x2)5+

(−2.62582 + 3.74206
√
−1)(x0 + x1(.122478 + .537715

√
−1) + x2(−.436832− .342586

√
−1))5+

(−2.62582− 3.74206
√
−1)(x0 + x1(.122478− .537715

√
−1) + x2(−.436832 + .342586

√
−1))5+

(.000108482)(x0 + (−2.94762)x1 + (12.5538)x2)5
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The symmetric case: uniqueness in the subgeneric case

Theorem (Sylvester[1851], Chiantini-Ciliberto, Mella, Ballico,
[2002-2005] )

The general f ∈ SdCn+1 of rank s smaller than the generic one
has a unique Waring decomposition, with the only exceptions

rank s =
(n+2

2

)
− 1 in S4Cn+1, 2 ≤ n ≤ 4, when there are

infinitely many decompositions

rank 7 in S3C5, when there are infinitely many
decompositions

rank 9 in S6C3, where there are exactly two decompositions

rank 8 in S4C4, where there are exactly two decompositions

rank 9 in S3C6, where there are exactly two decompositions

The cases listed in red are called the defective cases.
The cases listed in blue are called the weakly defective cases.
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Weakly defective examples

Assume for simplicity k = 3. Only known examples where the
general f ∈ V1 ⊗ V2 ⊗ V3 (dim Vi = ni + 1) of subgeneric rank s
has a NOT UNIQUE decomposition, besides the defective ones, are

unbalanced case, rank s = n1n2 + 1, n3 ≥ n1n2 + 1

rank 6 (n1, n2, n3) = (3, 3, 3) where there are two
decompositions

rank 8 (n1, n2, n3) = (2, 5, 5), sporadic case [CO], maybe six
decompositions
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Theorem

The unbalanced case is understood [Chiantini-O. [2011]].

There is a unique decomposition for general tensor of rank s
in Cn+1 ⊗ Cn+1 ⊗ Cn+1

if s ≤ 3n+1
2 [Kruskal[1977]

if s ≤ (n+2)2

16 [Chiantini-O. [2011]]

The exceptions to uniqueness listed in the previous slide are
the only ones in the cases

∏
ni ≤ 104

[Chiantini-O-Vannieuwenhoven [2014]]

Giorgio Ottaviani Tutorial on Tensor rank and tensor decomposition



Relevance of matrix multiplication algorithm

Many numerical algorithms use matrix multiplication. The
complexity of matrix multiplication algorithm is crucial in many
numerical routines.

Mm,n = space of m × n matrices

Matrix multiplication is a bilinear operation

Mm,n ×Mn,l → Mm,l

(A,B) 7→ A · B

where A · B = C is defined by cij =
∑

k aikbkj .
This usual way to multiply a m × n matrix with a n × l matrix
requires mnl multiplications and ml(n − 1) additions, so
asympotically 2mnl elementary operations.
The usual way to multiply two 2× 2 matrices requires eight
multiplication and four additions.
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Rank and complexity

Matrix multiplication can be seen as a tensor
tm,n,l ∈ Mm,n ⊗Mn,l ⊗Mm,l

tm,n,l(A⊗ B ⊗ C ) =
∑

i ,j ,k aikbkjcji = tr(ABC )
and the number of multiplications needed coincides with the rank
of tm,n,l with respect to the Segre variety PA× PB × PC of
decomposable tensors.
Allowing approximations, the border rank of t is a good measure of
the complexity of the algorithm of matrix multiplication.
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Strassen result on 2× 2 multiplication

Strassen showed explicitly

M2,2,2 =a11 ⊗ b11 ⊗ c11 + a12 ⊗ b21 ⊗ c11 + a21 ⊗ b11 ⊗ c21 + a22 ⊗ b21 ⊗ c21

+ a11 ⊗ b12 ⊗ c12 + a12 ⊗ b22 ⊗ c12 + a21 ⊗ b12 ⊗ c22 + a22 ⊗ b22 ⊗ c22

=(a11 + a22)⊗ (b11 + b22)⊗ (c11 + c22) + (a21 + a22)⊗ b11 ⊗ (c21 − c22)

+ a11 ⊗ (b12 − b22)⊗ (c12 + c22) + a22 ⊗ (−b11 + b21)⊗ (c21 + c11)

+ (a11 + a12)⊗ b22 ⊗ (−c11 + c12) + (−a11 + a21)⊗ (b11 + b12)⊗ c22

+ (a12 − a22)⊗ (b21 + b22)⊗ c11.

(3)
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Implementation of Strassen result

Dividing a matrix of size 2n × 2n into 4 blocks of size 2n−1 × 2n−1

one shows inductively that are needed 7k multiplications and
9 · 2k + 18 · 7k−1 additions, so in general ≤ C 7k elementary
operations.
The number 7 of multiplications needed turns out to be the crucial
measure.
The exponent of matrix multiplication ω is defined to be limn logn
of the arithmetic cost to multiply n × n matrices, or equivalently,
limn logn of the minimal number of multiplications needed.
A consequence of Strassen bound is that ω ≤ log27 = 2.81 . . ..
The border rank in case 3× 3 is still unknown.
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Thanks !!
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